Diffuse scattering

Isabelle Mirebeau

Laboratoire Léon Brillouin CE-Saclay 91191 Gif-sur Yvette, FRANCE

through a few examples

-3

Outline

- General features
- Nuclear diffuse scattering: local chemical order and/or static displacements
- Magnetic diffuse scattering: Iocal magnetic order

General features

- •A simple example
- •How to describe the diffuse scattering?
- •Several lengthscales
- •NO time scale: what does the spectrometer measure?

A simple example

A simple example

How to describe the diffuse scattering ?

How to describe the diffuse scattering ?

• from the disordered state

Short range order parameters

- Deviation from random distribution
- Local lattice distortions
- Pair distribution function (pdf)
- Local magnetic perturbations

- from the ordered state
 - Correlation lengths
 - Critical behaviours

From local constraints

- entropy
- Mapping and gauge fields

No obvious « a priori » description!

choice of the model depends on the context

Measure in absolute scale

To decide if the model is realistic or not

 $(Tb_{1-x}La_{x})_{2}Mo_{2}O_{7}$

Chemical Pressure

Expanding the lattice

Ρ

Changing the band structure changes the magnetic frustration (sign of Mo-Mo interactions)

From the random state

Look at the landscape!

RANDOM state (paramagnetic/disordered)

SRO parameters

Tb₂Mo₂O₇ spin glass

Statistical information on the first neighbour shells (occupation/ relative spin orientations)

A.Apetrei, I. M. et al PRL **97**, 206401 (2006)

From the ordered state

The tricky cases

Quantum critical point

Induced by pressure or concentration

mesoscopic

Several lengthscales

Туре	Typical lengthscale	Example
local order Near neighbours	A few unit cells 1-10 Å	Binary alloys spin glasses
Mesoscopic structures	A few tenths of unit cells 10-100 Å	Critical phenomena
Long Range Order	Limited by exp. resolution	Bragg

> 500-1000 Å

NO Time scale!

FIG. 7. (Color online) Observed and FULLPROF calculated NPD patterns at several temperatures. Above $T_{\rm N}$ a strong diffuse scattering is observed on the patterns recorded on 3T2 spectrometer (top) with $\lambda = 1.225$ Å. This scattering is not visible on the G6.1 patterns (bottom) for which $\lambda = 4.74$ Å.

PHYSICAL REVIEW B 84, 054455 (2011)

Frustration-driven magnetic order in hexagonal InMnO₃

X. Fabrèges,^{1,2} I. Mirebeau,¹ S. Petit,¹ P. Bonville,³ and A. A. Belik⁴

Local chemical order

- •Deviation from random distribution
- •Short range order parameters
- •Nuclear Diffuse scattering
- •Pair potentials
- •Example 1: (single crystal) : TiC vacancies
- •Example 2 : polycrystal: Fe-Cr alloys
- •How improve the data quality?
- How improve the data treatment ? The modern tool : pdf

Local chemical order

Α

Alloy: $Ac_A Bc_B C_A + C_B = 1$

Long Range Order

Short Range Order

All sites are statistically equivalents

 $P_{A}=c_{A}; P_{B}=c_{B}$

S=0

Order parameter S

n: ratio of A atoms « well placed »

c_A<n<1 0<S<1

 $S = \frac{n - c_A}{c_B}$

 $\begin{array}{l} \text{Surstructure} \\ \text{I} \; \text{Bragg} \propto S^2 \end{array}$

SRO parameters α_n (Cowley-Warren)

Local Order parameters

 $\alpha(0) = 1$

$$\alpha(\vec{R}_n) \to 0; n \to \infty$$

$$1 + \sum_{i=1}^{\infty} N_i \alpha_i = 0$$

Calibration of the nuclear cross section (checks the consistency of the measurement) Fitting constraints

Sum Rule (virtual) : Grand Canonical space

Chemical order parameters and nuclear diffuse scattering

Cowley-Warren modelAlloy : A B
A:
$$c_A$$

B : c_B Cowley Phys.Rev. 77,669, (1950)
Warren X ray diffraction (1968) $I(\vec{Q}) = N(c_A b_A + c_B b_B)^2 \cdot \sum_n \exp(i\vec{Q} \cdot \vec{R}_n) + N(b_A - b_B)^2 \cdot \sum_n < \sigma_0 \sigma_n > \exp(i\vec{Q} \cdot \vec{R}_n)$
 \uparrow n Bragg: average latticeDiffuse scattering : deviation

Diffuse cross section from chemical SRO

Scattering Vector

$$\vec{Q} = \frac{2\pi}{\lambda}\vec{s} - \vec{s}_0$$

Order parameters and pair potentials

Mean field model

Clapp et Moss Phys. Rev. 142, 418, (1966), et suivants

$$H = \frac{1}{2} \sum_{i,j} \left[V_{ij}^{AA} \sigma_i^A \sigma_j^A + V_{ij}^{BB} \sigma_i^B \sigma_j^B + V_{ij}^{AB} (\sigma_i^A \sigma_j^B + \sigma_i^A \sigma_j^B) \right]$$

Effective pair potential

$$V_{ij} = V_{ij}^{AB} - \frac{1}{2}(V_{ij}^{AA} + V_{ij}^{BB})$$
 $V_{ij} < 0$ Order, AF
 $V_{ij} > 0$ Segregation, F

Hamiltonien Ising

$$H = -\frac{1}{4} \sum_{i,j} V_{ij} \overline{\sigma}_i \overline{\sigma}_j$$

$$\alpha(\vec{Q},T) = \frac{C}{1 + \frac{2c_A c_B V(\vec{Q})}{kT}}$$

Local order of carbon vacancies

Local Order in solid solution ?

Ordre local order of carbon vacancies in TiC_{0.64}

B. Beuneu, R. Caudron (Onera) T. Priem (thèse 1988)

Intensity measured in situ : T=900 °C **local order** + lattice distortions Maxima at hkl positions $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

~30 parameters

Intensity from local order, calculated from the SRO parameters $: 20 \alpha$

20 SRO parameters

Intensity calculated by the Mean field (Clapp-Moss) model 4 pair potentials (2 main) $V_1=15$; $V_2=48$; $V_3=-4$; $V_4=8$ meV

2 potentials

From single crystal to polycrystal

First and unique example of short range order inversion in a solid solution

x >x_c clustering

x ~x_c random

x<x_c ordering

origin: anomaly of the band structure : local magnetism of Cr

M. Hennion J. Phys. F (1982)

Physical consequences

- Resistivity
- Bulk modulus
- Aging (irradiation)
- Formation energy

Possible applications in metallurgy

~ 700 papers and 800 citations/year about FeCr

Direct probe : Neutron diffuse scattering

FeCr alloys : Short range order inversion

IM, M. Hennion, G. Parette, PRL(1984)

Fe_{1-x}Cr_x, SRO parameters and Monte-Carlo Sim.

Simulation

A.Caro et al Phys. Rev. Lett. **95**, 075702, (2005).

P. Erhart et al Phys. Rev B(2008)

$Fe_{1-x}Cr_x$, pair potentials and ab initio models

Ab initio calculations:

[8] M. Hennion J. Phys. F (1983)[19] Ruban et al Phys. Rev . B (2008)

How to improve the data quality?

The secrets:

• Decrease environmental background

• Take care of all corrections

- Vacuum chamber..
- •Background (Cd and empty sample holder) •transmission
- angle dependent absorption
- multiple scattering
- Detector efficiency

• Calibrate the cross section in absolute scale

Vanadium sample (Corrected)

- Think about possible artefacts
- find the suitable conditions

- diffuse Magnetic scattering?
 play with H and (q, H) angle, polarized neutrons..
 - inelastic (play with T)
 - Thermodynamical conditions (quench, in situ..)

How to improve the data treatment ? The pdf

Calculated: from a structural model

$$G_c(r) = \frac{1}{r} \sum_{i} \sum_{j} \left[\frac{b_i b_j}{\langle b \rangle^2} \delta(r - r_{ij}) \right] - 4\pi r \rho_0$$

Peaks of G(r)

- position: interatomic distances r_{ii}
- intensity : stucture factor b_ib_i
- width : r_{ii} distribution, Debye-Waller, occupation disorder

local magnetic order

•Diffuse scattering and ...

- magnetic fluctuations : *above* T_c
- spin waves : *below* T_c
- critical behaviour: *around* T_c
- •Choose the right Q-scale
- Diffuse scattering in spin ices local constraints

Diffuse scattering and magnetic fluctuations : T>T_c

From 2D to 3D order

Divergence of ξ associated with 3d order (coupling between the planes)

Collapse of the 2D diffuse scattering and onset of Bragg peaks

Diffuse scattering and critical behaviour : T⁻T_c

How diffuse scattering collapses on Bragg peaks: the scaling laws

Towards a transition

Diffuse scattering and spin waves T<T_C

Zn₂VO(PO4)₂: Quantum fluctuations in a S=1/2, 2d- Antiferromagnet

Above T_N

Below T_N

Why?

S. M. Yusuf et al PRB (2010)

Diffuse scattering and spin waves T<T_C

Zn₂VO(PO4)₂: Quantum fluctuations in a S=1/2, 2d- Antiferromagnet

T=0 Calculation of the SW spectrum

 $H = J_1 \sum_{i,\delta} (S_i S_{i+\delta}) + J_2 \sum_{i,\xi} (S_i S_{i+\xi}) + J_\perp \sum_{i,\delta_\perp} (S_i S_{i+\delta_\perp})$ $-D\sum (S^z)^2$, **(a)** 0.9 0.8 1.5 0.7 Energy (meV) 0.6 0.5 0.4 0.3 0.5 0.2 0.1 Sum over energies 1 1.2 1.4 1.6 18 2 0.2 0.4 06 0.8 in the range O-E_i (h h 0) 0.25 at constant Q modulus (b) 0.2 1.5 Energy (meV) 0.15 0.1 0.5 0.05 program from S. Petit 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 S. M. Yusuf et al PRB (2010)

Powder average and projection in S(q) plane

Chose the right Q scale

Towards a ferromagnetic transition: from Diffuse scattering to SANS

I. M et al J. Mag. Mag. Mat 54, 997 (1986)

Diffuse scattering in Spin ices

Describe the diffuse scattering from a **locally ordered state**

- Local constraints : ice rules
- Entropy
- conservation laws and pinch points
- mapping

The ice rules

Pyrochlore lattice with loosely connected tetrahedra

Frozen, disordered state with ground state entropy (akin to real ice)

Conservation laws and diffuse scattering

Diffuse scattering in spin Ice and spin liquid

Pinch points in both!

SF

2

Analysis of the pinch points

Strongly anisotropic correlations of algebric nature

see also T. Fennell et al PRL (2012)

conservation law in TTO spin liquid analogous to the ice rules

S.Guitteny & al, PRL 111 (2013)

Other local constraints and pinch points

ferroelectrics

Positional Correlations between H-atoms

Youngblood PRB (1978)

spinels

« Molecular modes »

Simulate the diffuse scattering in spin ices

Simulate the diffuse scattering in frustrated magnets

Recent attempt in geometrically frustrated systems : an empirical solution to fit the diffuse scattering

Paddison and Goodwin PRL(2012)

- Calculate powder data from exact model
- Fit this data by Reverse Monte Carlo technique using additionnal constraint (minimize local variance of spin orientations)
- Rebuild the 3d pattern (single crystal)

Message to bring back

Diffuse scattering is crucial in many studies of condensed matter physics. For example:

T>> T_c

local chemical order

- informs on pair potentials which governs physical properties,
- allows one to predict phase diagrams, with applications to material science

T~Tc

Studies of critical phenomena and scaling laws

T=0

zero point fluctuations and GS entropy

- Low spin values, low dimensions, geometrical frustration
- Local constraints yield general features (such as pinch points)

No a priori description!

New physical cases stimulate new approaches